Experience Report: Contributions of SEFMEA to
Requirements Analysis

Robyn R. Lutz* and Robert M. Woodhouse
Jet Propulsion Laboratory

California Institute of Technology
>asadena, CA 91109

Deccember 15, 1995

Abstract

This experience report describes the 1essons learned from the use of Software Failure
Modes and Eflects Analysis (SFMEA) for requirements analysis of critical spacecraft
soft warc. The S'M A process was found to be successful in ide ntifying some ambigu-
ous, inconsistent, and missing requirements. More importantly, the SFMIEA process,
followed bya backward analysis somewhat similar 10 Fault Tree Analysis (F1TA), iden-
tified four significant, unresolved reguirements issues. These issues involved complex
system interfaces and unanticipated dependencies. Our results challenge some current
views on the limitations of SI'MEA and suggest that recent cfiorts by rescarchers to
integrate SI'MEA with a broader 1'T'A approach have merit.

1. The Problem

There are software programs onboard spacecraft that must autonomously detect, identify,
and oversce the recovery of the spacecraft from faults during flight. Since these faults can
thrcaten the well-being of thespacecraft and the success of its scientific mission, the soft-
ware that responds to such faults is considered to be critical by thic development team, A
faull is giventhe standard definition here of being either “a defect in a hardware device or
component” or “an incorrect step, process, or data definition ina computer program” [11].
Those faults which can cause power]0ss, excessive temperature, propellant tank overpres-
sure, interruption of uplink commandability, or loss of downlinked scientific and engineering
telemetry arc detected and handled by onboard software.

Requirements analysis of this critical software is difficult since the software is often both
complex and highly coupled. The software that respondsto faults is often dependent on
other distributed software and hardware components (for example, a single hardware fault
may aflect multiple software processes) and subject to timing constraints (for example, the

*IMirst author’'s mailing address is Dept. of Compruter Science, lowa State University, Ames, |A 50011.

/ Requirements Analysis

Unresolved
issues

.

Figure 1: SFMEAinthe Context of the Requirements Analysis Process

software must provide quick rccovery of functionality). These properties make the correct
and complete specific.atiol] of requirements hard to determine and hard to validate.

I particular,inadequate software responscs to extreme conditions and boundary cases arc
of concern. Appropriate software responses to anomalous hardware behavior, unanticipated
states, invalid data, and signal saturation arc robustness issues that should be resolved, if
possible, during the requircinents phase.

2. Our Approach

This experience report describes our use of Software Failure Modes aud Fffects Analysis
(SI'MEA), followed by a backward analysis somewhat similar to Fault Tree Anadysis (1"TA),
to assist inanalyzing the software requirements for critical portions of the spacecraft software.
Figure 1 shows these techniques inthe context of the requirements analysis process.

The approach was used ontwenty-four softwarc modules on two spacecraft systems,
Cassini and Galileo. The goals were to help reduce the number of failure modes, minimize

the effect of the remaining failure modes, and scarch for unanticipated failure modes. A
failure mode is defined to be “the physical or func tional manifestation of a failure. ” A
failure is defined to be “the inability of a system or component to perform its required
functions within specified performance requirements limits” [11],

Software lailure Modes and Effccts Analysis is an extension of the hardware Failure
Modes and Effects Analysis (FMISA). The procedure for performing hardware 'MEA has
been standardized [] 9]. There is no comparable. standard for performing SKMIEA| although
its use is well-[ioclllloclltc(l [9, 21]. For examnple, atechnique similar to S'MISA, called
Software lirror Eflects Analysis (SKEISA), was used in the development of the rendezvous and
berthing software for the Columbus Iree Flyer. Ior critical software, a SEEA was required
[25]. The System Safety Analysis Handbook provides a brief, non-procedural description of
SFMEA [23]. A more detailed description of the SKMEA process as applied to our project
appears in Section 3.

We cmbedded the SFMIEAin a two-step requirements analysis process (Iig. 2):

1 TheSIFMIEA used forward searching to identify Cause/Iflcct relationships inwhich
unexpected data or software behavior (causes) can resultin failure modes (effects). For
example, “outdated sensor data” (cause) can“prevent the software from commanding
anceded hardware reconfiguration” (eflect).

Note that although the cause is often labeled a “fault” in descriptions of SFMIJA,
it is more useful to consider unexpected or anomalous data and behavior, as well as
strictly incorrect data ant] behavior. 'This is ecspecially true for SI'MEA performed
during requirements analysis, since a “fault” al this early stage often mecansnothing
more concrete than a deviation from expect ations.

2. A backward scarch technique was then used to examine the possibility of occurrence
of cachanomaly (cause) that produced a failurc mode (eflect). Inthe example above,
the root node for the backward search was “outdated scnsor data” In this case our
backward search for circumstancesthat could lead to outdated sensor data found a sit-
uation in which failed hardware continucdto provide (inaccurate) data to the soft, warc.
This bad data,ducto the voting logicinthe software, coul d veto a needed recovery
action. By demonstrating the possibility of a new falure mode (obsolete data prevent-
ing required actions), the rcquirements specifications were improved. The falure mode
was climinated by a change to the software requirements.

The backward scarch issimilar to a IFault Tree Analysis, except that the root node (the
cause) is nol necessarily a fault or even ancvent. A Fault ‘Tree Analysis, on the other
hand, takes a known fault or hazard as its root and works backward to dcterminethe
possible causes [5]. Another difference between our backward scarch and 'TA is that
Software I'I'A is usually applied to code, whercas the backward scarch here is applied
to software requirements. Since Fault Tree Analysis has been previously documented
in detail, no further description is provided here [1 3].

Note also thatthe backward search in this requirements analysis evaluates only the
“possibility” of occurrence, not the likelihood. At the requirements phase of devel-
opment there is insuflicient knowledge to provide any numerical measurement of the
probability of occurrence.

‘ Soft ware |
Requirements ‘
Specification ’

) Identify unexpected data
Forward or behavior that can
Search cause failure modes

7 Analyze enabling circumstances
Backward contributing to possibility of
unexpected data or behavior
Sear ch

Figure 2: Overview of Analysis Process

Integrating SFMEA and Backward Search

In our expericence, the strength of SFMEA (identifying previously unknown failure modes)
and the strength of backward scarch (identifying combinations of events and circumstances
that could cause the hypothesized fault to occur) were complementary. ‘]’bus, some current
views regarding the limited cflectiveness of S'MEA were not supported by the results of our
integrated SKFM EA and backward search approach.

For example, SFMISA is often described as only considering one discrepant event (fault)
al atime, rather than combinations of events. We found, however, that when integrated
with a backward analysis, the SFMEA often helped isolate comnbinations Of events and
circumstances that canlead to undesirable states.

It was interesting that in four cases the failure mode identified by the SF'MEA was not
apreviously known failure mode. Thus, if a FT'Ahad been performed starting from the
known failures, these four requirement inadequacies would have remained hidden. Instead,
the SFMEA isolated a causc (e.g., bad input,) that led to anundesired effect (¢.g, bad control
decision). Thie backward search (e.g., “how could that bad input reach the software?’) then
identified a combin ation of events or unexpectedinteractions that could lead to the failure
mode postulated in the SFMEA.

Our results indicate that recent work tointegratce the forward scarch for effects (typical
of SI'MISA)andthe backward search for contributing causes (typical of 1''I'A) has merit. For
example, a recent paper by Maicr describes the use of a fault-tree based hazard analysis to
derive safety requirements for a robot’s control software. I'M ECA (Failure Modes, Effect,
and Criticality Analysis) is performed 011 the documented software requirements. Maier finds
that the major benefit of the FMISCA lies in its being a preparatory activity to fault tree
construction. [15].

A recent paper by McDermid and Pumnfrey describes a technique for software safety anal-
ysis based on astructured approachto the “imaginative anticipationof hazards” [1 6]. Based
on the HAZOP approach [1 3], their work concentra tes oninformation flows and develops
sets of guide wordsto prompt consideration of hypothetical failures. Whercas we perform
the SI'MEA first and thenthe backward search, they (consistent with the HAZOP tech-
nique) first perform the backward search for causes and then consider the effects of cach
hypothetical failure.

It would be interesting to compare the effect of the ordering of the scarches onthe success
of the analysis. From our limited experience, it is not clear whether the order of the steps
is significant. For example, all four of our unanticipated failure modes might have been
identificd even if a backward search for contiibuting causes had preceded the SFMEA.

SFMEA During Requirements Analysis

Software Iailure Modes and Fffects Analysis is most commonly used during design analysis.
We found that S'MEA was effective during requirements analysis when, as in our case, the
requirements specification provided sufficient detail. The requirements document that wec
used contained over 200 pages of Y¥nglishtext, data tables, and flowcharts describing 24
software modules. The requirements specification defined a new software system. ‘1’here was
no reuse of software components from previous systemns.

For simple, stand-alone software where few details arc documented attherequirements
stage, SFMIEA is not fcasible until a design document exists. However, wc found that for a
complex, embedded application) such as a spacecraft, the SFM EAimproved the quality of
the software requirements specification as well as the understanding of the software problem.

In particular, SFMEA made the following contributions to the requirements analysis.

1. Farly understanding of requirements. Understanding what the software requirements
arc is a huge task ina complex, distributed system. SEMEA helpedidentify constraints
that would beimposed on the design by other parts of thesystem or by the context
in which the embedded software operated. These constraints and dependencies were
thus able to be incorporated into the requirements specification.

‘2. Communication. The requirements specification document is written by a system
engineer, and then handed off to a design development tead n. A clear, unambiguous,
and complete document minimizes the possibility of misunderstanding at this juncture.
The SFMEA assisted in this effort.

3. Error removal, Requirements errors, especially interface requirements errors, have
historically been asource of persistent errors during spacecraft development (sometimes
escaping detection untilsystem testing) [1 4]. Oftenthese requirements errors involve
unanticipated failure modes or interface dependencies that arc difficult to detect. The
SIFMISA was able to identify some such errors prior to design decisions being made,
saving subscquent time and effort.

SKMEA has some well-known limitations and disadvantages that were confirmed by our
experience. Like most failure analysis methods, SFMEA is time-consuming; much of it is

[

tedious; and it depends on the domain knowledge of the analyst and the accuracy of the
documentation. In addition, unlike hardware, a complete list of fatlure modes for software
cannot be assembled. SKFMEA is also a ma nual rather than an automatic method. Attempts
to automate a process similar to SI'MEA (c.g., by expanding a directed-graph fault tree
analysis tool so that errors can be introduced and their effects tracked) have not provided
a substitute for manual SK'MEA [7, 8]. More rigorous state-reachiability analyses, though
useful, require thorough and time-consuming modeling of the system [2, 3, 4, 10].

The SEMEA approach was chosen as part of the requirements analysis process on this
project largel y because it contributes toa systems approach to 1ecquirements validation. It
focuses onthe ways in which software cancontribute tothe systein’s reaching an undesirable
state. SFMEA analyzes the software’s response to hardware faults (e.g., malfunctioning sen-
sors)and to operator errors that result in bad input data. (e. g., inappropriate commands).
SIF'MISA also analyzes the effect of incorrect software actions(c.g, a software process issuing
crroncous reconfiguration commands) on the hardware components. SFMEA pays partic-
ular attention to hidden dependencies or interactions that could causc the propagation of
crroncous data to other software modules. In this way the requirements analysis process
exploits the available domain expertise.

SI'MIcA differs from a causal analysis such as F'T'A in that SFMEA postulates the exis-
tence of bad data or unexpected behavior and theninvestigates the effects of that anomaly
onthe correct functioning of the software module and the system. Whether the data or
behavior could actually be corrupted in that manner (e.g., the arrival of outdated sensor
data or abnormal termination of the software module) is 1ot the primmary concern at this
pomt of development. The focus in SFMEA is instead on the consequences of incorrect data
or inappropriate software activity. This is especially appropriate for requirements analysis
since judgments as to whether a particular failure scenario is credible very often shift as
development progresses.

If the effects of the bad data or unexpected behavior arc shownto be acceptable, then
confidence in the requirements is enhanced. Examples of acceptable effects arc that bad
data arc rcjected by the software or that premature termination of the software module still
leaves the system in a consistent state.

If the effects of the bad data or unexpected behavior are shown to be unacceptable and a
backward search confirins the possibility that the situation could occur, then the information
is fed back intothe requirements development process. Kxamples of unacceptable effects are
that the bad data arc used in a control decision resulting in erroncous issuance of commands,
or that an abnormal termination of the software module results in a global variable being
updated while the status variable still indicates that no change has been made.

3. The SFMEA Process

This section describes the process by which the SFM EA (the “Forward Scarch” in Fig. 2)
was performed on the spacecraft, software modules.Detailed descriptions of backward search
arc available in [13].

6

Overview of Process

The following steps were performed for cach software program that was analyzed.

1. The normal operation of the subsystem Or function {o be protected by the software was
described. This description was based on the available requirements documentation,
the analyst’s understanding of the system, and additional explanations from project,
personnel, as needed. For example, for software that monitored and responded to the
10ss of a health indicator (a “heartbeat” sent between computers), a description of how
the heartbeat function behaves was assembled.

2. The possible functional failures of the subsystem or functionto be protected were de-
scribed. Continuing with the example introduced above, this step described failures
such as “no heartbeat,* “heartbeat not updated,”’“hcartbeat updated but garbage,”
and “hecartbeat not synchronized with expected value’. Again, the information nceded
for this step was available in the documentation and from conversations with the re-
quirements and design engineers.

3. The normal operation of the software inprotecting the subsystem or function was de-
scribed. This step identificd how the software 1 esponded to cach of the failures listed
above. The information was available from an analysis of the documentation and
follow-up discussions. This step validated the adequacy of thecrequirements to accom-
plish the intended purposc of the software and confirmed the analyst’s understanding
of the software requirements.

4. The possible falure modesand effects of the software were identified. I'his step was the
crux of the SF'MEA. The Data and Events Tables described below were constructed
as part of thisstep. Of special concern was the possibility of unexpectedinterac-
tions among redundant hardware components and computers or among the software
processes. For example, the SFMEA investigated scenariosin which a failure or ap-
parent failure of the heartbcat might not prompt a correct response, or inwhichan
inappropriate response could create a problem where nonc existed previously.

SFMEA Tables

In a message-passing modcel of a distributed system, two kinds of failurcsarc generally
represented: communication failures and process failures [] 2]. Inaccordance with this model,
two kinds of failures arc analyzed ina SFMEA for each software process. To assist inthe
analysis of any possible failures of the software, two tables arc constructed: aData ‘1'able and
an Kvents Table. A 1)ata Table involves communication failures. It provides theinformation
nceded to analyze data dependencies and software interface errors. AnEvents ‘1'able involves
softwar ¢ process failures (where “process” means “the programin execution’)) [24]. The
Iovents Table provides the information needed to analyze the effects of failures possibly
caused by software that fails to function coriectly. The investigation]] of faults in the two
tables is consistent with current classifications of defects in software [1, 6, 17118, 22].

The first type of table istheData ‘Jable ("1'able 1).This table cvaluates both the effect
of receiving bad or unexpected input data on the behavior of the process being analyzed,

Data Fault Type [Description

Critical mode flag | Incorrect value | Flag set to true Unnecessary

during non-critical | ieconfiguration
modec commanded

‘Jable 1: Data ‘Jable I'xample

and the eflfect of producing bad or unexpected output data on the behavior of the processes
that use this data.

For cachinput (data item read or received by the software process) and each output (data
item written or output by the software process (including, in ourapplication, commands to
spacccraft subsystems), cach of the following four faults is postulated:

1. Absent Data: Lost or missing messages, absence of sensor input data, lack of input
or output, failure to receive needed data, missing commands, missing updates of data
values, data loss duc to hardware failures, fail urc of a software process or scnsor to
send the data needed for correct functioning of this softwarce module.

2. Incorrect Data: Bad data, flags or variables set to values that don’t accurately de-
scribe the spacecraft’s state or the operating environ inent, erronecous triggers, limits,
dcadbands, delay timners; erroneous parameters, wrong commands output, or wrong
parameters to theright commands; spurious or unexpected signals.

3. Thiming of 1)ata Wrong: 1ata arrive too late to be used or be accurate, or too carly to be
used or be accurate; obsolete data are used in control decisions (data age); inadvertent,
spurious (uncxpected), or transient data.

4. Duplicate 1)ata: Redundant copies of data, data overflow, data saturation.

For cach of these four fault types the Data Table includes the description of the fault and
the eflfect. The Description column describes the fault as applied to the relevant data item.
For example, if the data itemn is a flag that indicates whether the system isin a critica mode,
and the data fault type is “Incorrect value,” the Description column might state, “Flag set
to true during non-criticalmode.”

The Ilect column is a shorthand description of {he consequence of the data fault type
locally onthe data iteimnand more globally on the subsystem and system.In the example
given, the entry might state, “Unnecessary rcconfigurationcommanded .”In general, the
cffect of a fault on input data will be either that a state is not updated as it should be,
or that the state change is not visible to thesoftware that uses it. The effect of a fault on
outpul data will usually be that other components (software processes or hardware units)
lack theinformationtheyneed to function correctly.

The sccond type of table is the Kvents ‘Jable (rI’able 2). Thistable describes both the local
cffect of performing anincorrect event onthisimodule’s behavior andthe global, or cud, effect
of theincorrect event on other parts of the subsystem and system. For cach event that occurs

ettt | Bvend Faull Type | Description | Fiffect]
Calculate.cpmintes | Incorrect logic Pointer is Points past end
into a ddalde miscalculated | of table, preventing

Table 2: Events Table Example

as the process cxccutes, four event fault types arc postulated. What constitutes au event
depends on the level of detail of the documentation provided, but is usually considered to be
asimgleaction (e. g., perform a calculation, sampleca sensor value, command anantcnna to
slew to another position). Although some requirements will not be broken down into events
until the design stage of development, many of the critica requircinents arc already specified
interms of the actions, or transformations of inputs into outputs, that must occur.

There arc four types of cvent faults:

1. Halt/Abnormal Termination: Open, stuck, hung, deadlocked at this point (event) in
the process.

2. Omission: Event fails to occur but process continues execution; jumps, skips, short.

3. Incorrect Logic/Event: Behavior is wrong, logic is wrong, branch logic is reversed,
wrong assumptions about state, prcconditions, “don ‘t cares’ aren’t truly so event
(c.g., command issued) is wrong to implement the intent or requirement.

4. ‘Jilniug/Order: Ivent occurs at wrong time or inwrong order, event occurs too early
(premature; system not in proper mode to receive or process it), too late; the sequence
of events is incorrect, an event that must precede another event doesn’t occur as it
should; iterative events occur intermitiently rat her thanregularly; events that should
occur only once instead occur iteratively.

For cach of these four fault types, the 1ovents Table includes a description of the fault and
its effect. The Description column describes the fault as applied to the event. Ior example,
if the event is the calculation of a pointerinto a table and the event fault is “Incorrect logic,”
the description might state, “Pointer will be miscalculated .”

The Eflect column is a shorthand description of the consequence of the event fault type
ontherelevant event and the failure mode(s) that might result. Inthe example given, the
entry might state, “Pointer points past end of table, preventing nceded reconfiguration.” In
general, the effect of a Halting fault type will bethat there is no output from the software
response. The possibility that some outputs (e.g., updates of shared variables) occur before
tile process halts carries a risk of the spacecraft being left inan inconsistent state. The
effect of anOinission fault type is often that nooutput or incorrect output is produced (e.g.,
wrong time or wrong order). Again, the software may be left inaninconsistent state. Most
often, the eflect of Incorrect] sogic is that the software’s behavior is wrong, i .c., it doesn’t
satisfy thefunctional requirements or produces wrong output.

The effect of a ‘Jilning/Order fault is usualy that the output doesn’t satisfy the timing
constraints, required order of commands (e.g., “Instrument must be turned off before replace-
ment heater is turned on”), or data dependencies (e.g., “The flag must be updated before
it is used”) needed for a correct interface with the other processes that usc this software
process’ output.

Inresponse to requests from the requirements and design engineers, who usc criticality
information to prioritize their cflorts, a criticality rating was added during the SFMEA
process. The criticality rating is an ordered pair. The first clement of the pair refers to a
six-tiered classification of theeflect of the faillure onthesystem (from “no noticeable impact”
to “complete loss of mission .“) Thesecond clement of the pair classifies the probability of
the failure occurring, based onexperience with similar software (“nigh ,* ‘(medium, ” and
“low.”) [20].

Using the SFM EA tables, concerns and possibly vulnerable arcas were identified. These
were documented in suflicient det ail so that a reader could determine whether the require-
ments needed to be changed. Most of the effort of performing a SFMEA was expended
here, inreviewing the SFM A tables to scc if the software lacked robustness against fail-
ures. During this step, contact with the project personnel was imnportant to distinguish
ambiguous/incomplete documentation from actual requirernents flaws. including copies of
all relevant documentation as well as explicit references to mnemos, expert opinions, €tc., in
the final reports encouraged rapid feedback of the results into the development process.

The results of each SI'MIZA were written up in three par ts: (1) Documentation inconsis-
tencies/ambiguities/inaccuracics/ omissions (used bot h for updating documentation and for
later validation of the code against the requirements); (2) issues and concerns (possible unan-
ticipated failurc modes or effects, ordered according to criticality); and (3) the supporting
SFMEA tables.

4. Results

Forty-eight issues were identified in the first seven SFMFA completed for the Cassinispace-
craft softwarc currently under development. ‘I)hc detection and resolution of these require-
ments issues arc described below in some detail to illustrate the successes and limitations of
the forward and backward scarch techniques we used.

In addition, results from four more recentl y performed SIFM EA and thirteen S'MEA
perforied on a prior spacecraft (Galileo) arc described to provide supplementary context.
Since information is unavailable regarding which issucs resulted inchanges to requirements
inthese carly or very recent SFMISAs, their results ar ¢ only suminarized.

Of the forty-eight issues found in the first scven SEFMEA performed on the current space-
craft, twcllty-five resulted inchangesto the requirements specifications. Of greatest interest
were the four of these twenty-five involving uniresolved requirements issues identified during
the SFMEA. All four of these major issues involved interface requirements (between soft-
ware modules), historically a difficult area for requircinents validation, Incach case, further
requireinents analysis was undertaken and led to a change in the requirements.

The four issues were failure modes involving previously unanticipated scenarios inade-
quately handled by existing requirements.

10

Software “Software shall request error

Requirements recovery whendata indicate
Specification error condition. **
1«
Bad data (outdated but in valid
Forward
range) cause software to veto needed
Search .
error recovery (failure mode).
Circumstances identified in which
Backward)
bad data could be sent fo this
Search

soft ware.

Figure 3: Fxample of Use of SFMEA

I'or example (Fig. 3), one SFMEA identified the following cause/cflcct relationship:
Causc: inaccurate data from a sensor; Effect: prevention of nccded error recovery. More
specifically, it was found that inaccurate input data could in effect veto the execution of a
software response that was nceded. This could occur when the input data appeared to be
healthy, but was actually reflecting an obsolete state.

Finding this cause/effect relationship in the SI'MI<Aled to a backward speculative inquiry
as to whether any set of circumstances existed whereby the software would actually receive
scemingly healthy but obsolete data. The backward scarch fromthe cause (obsolete data in
healthy range) found that the current interface requirements allowed obsolete data from a
failed sensor to continuctobe sent to the software. If a sensor failed with healthy values,
then that data would continue to be used indefinitely, allowing the failure mode identified
in the SFMEA.

Subsequently, the software requirements for the piece of software that passed the sensor
data to this module were changed. The new requirenient states that the software will ensure
data freshness by only distributing data, from a sensor that has passed a test.

It is interesting to note that the new requirement indicated by this SFMEA was not
actually for the software onwhich the SKFMEA was performed but for software on the other
side of the data interface. This provides anexample of how integrating SFMISA with a
backward scarch for ecnabling circumstances can detect hiddeninterface errors. In this case,
the combination of SFMIJA and backward search uncovered a latent requirement which could
thenbereadil y resolved prior to design.

A second cxample of arcquirements concern found by the use of SFM KA and backward
scare.11 illustrates how subtlc the intertwining requirements that lead to a robust design
sometimes arc. This failure mode involved a race condition between two different requests
for crror-handling. If an overpressure in the fuel tank occurred and the ‘(wrong” software
request, won the race, thenthe software would skip a milderresponse using non-consumable

1

resources (Jatch valves) and proceed to a more drastic response using consumable resources
(pyro valves). This failure mode was detected by noting in the SEFMISA that the persistence
limits (timers from the time the overpressure was detected until the request for fault-handling
was triggered) were identical for the two software 1 nodules. In normal operations this is
correct, since the timers will start count ing at different pressures. However, if both software
modules were to start counting concurrently (SFMIS A cause), a race condition would ensue
(SI'M EA cffect).

Taking the SFMIEA cause (concurrent countd own) as the root node, a backward scarch
found that this hypothetical occurrence could happen only when both software modules
detected an error at the same time. This is possible only in the following combination of
circumstances: a large overpressure in a propellant tank occurs just prior to the simultancous
cnabling of two software programs, which occurs only when the spacecraft has just achieved
insertion into orbit around the planct.

Finding this unanticipated failure mode in the SFMEAled to a requirements change
(staggered enabling of the software programs) to prevent the conscquences of this remote but
undesirable state. This provides a good cxample of how SI'MEA coinbined with backward
scarch can successfully investigate the effects of multiple or coincident cvents(anomalics)
during requirements analysis.

T'wenty-onc additional issues identified inthe SKMEA prompted easier changes to the
requirements specification. Iach of these documentation issues resulted in an update to
the requirements specification. However, none involved an underlying inadequacy in the
software requirements nor was additional requirements analysis needed. It is probable that
any sufliciently closc rcading of the requirements docuient or other means of informed static
analysis, combined with early analysis of operational scenarios, would raise thesame issues.
The numbers in parentheses indicate how man y issues in cach category were found.

. Correct /Clarify documentation (9) This included adding rationales for requircments,
documenting assumptions, and removing ambiguous statements. An example is that
the conditions under which a message is to bere-sent were unclear.

« Resolve inconsistencies (7). An example is inconsistent naming of flags,

« Add rules specifying proper operational usage (2). An example is that flight maneuvers
sometimes must take into account whether error recovery software has exccuted yet.

« Add missing requirements (3). Ancexample is that arequirement to disable a portion
of the software following initial execution was missing.

The remaining twenty-three of the forty -cight issucs raised by the SKMEA did not result
in changes to the requirements specification. T'he main reasons for this were:

o Cost/benefi t tradeoff decisions by the developers (e. g., some multiple-failure scenarios
were too unlikely to merit the cost of change);

« SI'MISA analyst error (where all later agreed that the existing requirements sufliced);

o Issucs that disappeared as a side-cflect of other updates to the requirements;

12

e Requirements that were cited as missing but, were, in fact, documented elsewhere (in
which case, only a cross- reference was needed); and

e Stylistic disagrecinents (c.g., in what section of the document a requirement belonged).

Similar resu lts to those found o011 the Cassinispacccraft were found in carlier SF ME A per-
formed on portions of the software of Galileo, another spacecraft. In general, since SFMEA
clliplla.sizes asystemsapproachto software analysis (software responses to hardware faults;
effects 011 hardwarc of software actions), the SFMEA is sometinies able to uncover hidden
dependencics among the components. Fxamples of the issues found by these earlier S'MEA
include:

« Unexpected interactions among distributed software processes could occur. In onc case

additional bus commands were required, but this was not recognized until the SK'M EA
postulated a new failure mode.

. Kirroncous invocation of software programs was found inscveral instances. For example,
a software requircement to ignore transient faults was missing inone case,

. Unexpected interaction among redundant components, i.e., betweenthe (nearly) iden-
tical copies of the software resident on the prime and backup processors,led to a failure
mode. For example, required hardware rcconfigurations were omitted when aservice
routine was invoked by both redundant components within a certain time interval.

e Unexpected propagation of results could occur in oncscenario, given the current re-
quirements. This meant that during a programmed delay, certain commands to a
remote unit were able to be reissued, contrary to the intended behavior.

« Unstated assumptions required for correct behavior were not always documented in
the specifications. As an example, a precondition that was not checked but assumed
to be true (the settings of some switches) could occasionally be false.

Although a backward search was not explicitly performedin connection with these earlier
SI'MEAs, it isinteresting to note that several of the failure modes resulted from both the
analysis of the effects of the hypothesized anomaly (the SFMEA) and the analysis of the
possibility of thatanomaly ever occurring (the backward search), It would beinteresting
to sceif other applications of FMIEA to software similarly containclements of both forward
and backward scarches.

5. Conclusion

The lessons learned from our application of SF'MEA followed by backward analysis to the
spacccrafl software requirciments were the following.

1. Although SFMISA is usually employed for design validation, we found that SI'MEA
was fcasible and uscful for requircinents analysisin a large, well-documentedsystem.

13

2. Integrating the forward search approach of SI'M A with a backward scarch for con -
tributing causcs enhances the eflectiveness of SEFMISA. In particular, we fount] pre-
viously unknown failure modes, multiple and coincident anomalics, and hidden de-
pendencies between software processes. These results challenge the current view of
SFMEA as limited to investigating known failure modes, single failures, and simple
deviations from expected behavior.

3. Our experience tends to validate recent efforts to combine forward and backward search
techniques. Whether the order of analysis matters is currently not clear and merits
experimental study. Our results from first performing a forward search for effects,
then a backward scarch for contributing causcs have not resolved this issue, nor do
they answer the question of which order is most cost cflective.

4. The biggest benefit of combining SFMEA with a backward search for contributing
causes was in the discovery of unknown failure modes during the requirements analysis.
We found four such issues that nceded further requirements analysis to understand and
resolve. Inaddition, we found twenty-ollc otheirequirements issues significant cnough
to change the content of the requirements specifications (e.g., missing, ambiguous,
or inconsistent requirements). These twenty-o]le requirements issues could probably
have been found by some combinations of other static analysis methods (e.g., formal
specification, formal inspections, and construction of operat,iolla scenarios). However,
it is probable that the four new failure modes could not have been readily found with
other rcquirements analysis methods.

For large, well-documented projects, we recommend SFM A incombination with back-
ward scarch as an cflective way to remove requircments errors and add robustness to the
requirements specification.

Acknowledgments

The authors thank Steven Tyler and Robert Keston for their early definition of the SFMEA
process a JPL. The authors thank Anna Bruhn, Sarah Gavit, Yoko Ampo,and Ching
Chen-Tsai for their valuable suggestions.

The work described inthis paper was carried out at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and
Space Administration.

Reference herein to any specific commercial product, process, or scrvice by tradename,
trademark, manufacturer, or otherwise, dots not, constitute or jmply its endorsement by
the United States Government or the Jet Propulsion Laboratory, California Institute of
Technology.

References

[1] . A. Addy, “A Case Studyon isolation of Safety-critical Software,” i]) Procedings of the Gth
Annual Conference 0?21 Computer Assurance, NI1ST /1151515, 1991, pp. 75-83.

14

[2] R.Alur, 'J. A. Henzinger, and Pei-lsinllo, “Automatic Symbolic Verification of Imbedded
Systems,” Proc. I4th Annual [FEE Real- Time Systems Symposium,1993.

[3] J M. Atlecand J. Gannon, “State-Based Model (‘hecking of Fvent-Driven System Require-
ments,” WL Transactions on Software Fngincering, 19, 1, Jan,1993, pp. 24-40.

[4] A. A. Bestavros, J. J. Clark, and N. J. Yerrier, “Management of sensori-motor activity in
mobile robot s,” Proc. 1990 IEKE International Conference on Robotics and A utomation,
1990, pp. 592-597.

[5) S. S. Cha, N. G.lLeveson, and ‘J. J. Shimeall, “Safety Verification in Murphy Using Fault
Tree Analysis,” Procof the 10th International Conference on Soflware Engineering, Apr,
1988, Singapore, pp. 377-386.

[6] R. Chillarege, et al., “Orthogonal Defect Classification- A Concept for in-1'roc.css Measure-
ments,” INI'E Transactions on Soflware F'ngineering, 18, 11, Nov 1992, pp. 943-956.

[7] FEAT (Failure Environment A nalysis Tool), NASA Cosmic# MSC-21 873,

[8) FIRM (I'ailure ldentification and Risk Manageme nt Tool), 1.ockheed Engineering and Sci-
ences Co., Cosmic..

[9] J. R. Fragola and J. . Spahn, “The Software Lri or Effects Analyis; A Qualitative Design
Tool,” Record, 1973 IERE Symposium on Computer Sofl ware Iteliability, IERY, 73 ClI1074 1-
9C, 1973, pp. 90-93.

[10] A. J. Hu, 1), L.Dill; A J. Drexler, and C.Han Yang, “Higher-1 .evel Specification and
Verification with 111) 1)s,” Workshop on Comnputer-Aided Verification, Montreal, Quebec, June
29- July 2, 1992.

(111K Standard Glossary of Software Isngineering Terminology, 1151 51d 610.1 2-1990. New
York: 1 KEE,1990.

[12] 1,. Lamport and N. Lynch, “Distributed Computing Models and Methods,” Formal Models
and Semantics, Vol. B, Handbook of Theorctical Computer Scien ce, Elsevier, 1990.

[13] N, leveson, Safeware, System Safely and Computers, Addison-Wesley, 1995.

[14] R.Lutz, “Analyzing Software Requirements krrorsin Safety -Critical, Kmbedded System s”
The Journal of Systemns and Software, 10 appear.

[15] T.Maier, “FFMEA and I'T'A To Support Safe Design of Embedded Software in Safety-Critical
Systems,” CSR 12th Annual Workshop on Safely and Reliability of Software Based Systems,
Sept. 12-15, 1995, Bruges, Belgium.

[16] J. A. McDermid and 1). J. Pumirey, “A Development of Hazard Anaysis To Aid Software
Design,” Proc of COMPASS ’94, Jun 27-30, 1994, Gaithersburg, MI), pp. 17-25.

[17] T. Nakajo and Y. Kume, “A Casc History A nalysis of Software }rror Cause-l;ffcct Relation-
ship,” IEE Transactions on Software F'ngineering, 17, 8, Aug 1991, pp. 830-838.

[18] T. J. Ostrand and 1. J. Weyuker, “Collecting aud Categorizing Software Error Data in au
Industrial Environment,” 7The Journal of Systems and Software, 4, 1984, pp. 289-300.

[19]

[20]

[21]

[22]

[23]
[24]
[25]

Procedures for Performing a Failure Mode, Effects and criticality A nalysis, MIL-STD- 1629A,
24 Nov 1980.

Project Reliability Group, Reliability Analyses Handbook, Jet Propulsion Laboratory 1)-5703,
July, 1990.

1). J. Reifer, “Software Failure Modes and Fifects Analysis,” IFEFE Transactions on Reliabil-
ity, vol. R-28, No. 3, Aug1979, pp. 247-'249.

R. W. Selbyand V. R. Basili, “Analyzing Irror-Prone System Structure,” IFEE Transactions
on Soflware Fngincering,17, 2, Feb 1991, pp. 141 152.

System Safety Society, System Safety Analysis Handbook, July, 1993.
A. S. Tanenbaum, Modern Operating Systems, Prentice-H al, 1992.

J. Wunram, “A Strategy for Identification and Development of Safety Critical Software Fm-
bedded in Complex Space Systems,” TAA 90-557, pp. 35-51.

16

